
AUTHOR C
OPY

Technology and Health Care 32 (2024) 3341–3361 3341
DOI 10.3233/THC-240046
IOS Press

Forecasting deep learning-based risk
assessment of vector-borne diseases using
hybrid methodology

Ashok Kumar Nandaa,∗, R. Thilagavathyb, G.S.K. Gayatri Devic, Abhay Chaturvedid,
Chaitra Sai Jaldaa and Syed Inthiyaze
aDepartment of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, India
bDepartment of Computing Technologies, College of Engineering and Technology, SRM Institute of
Science and Technology, Kattankulathur, Chennai, India
cDepartment of Electronics and Communication Engineering, Malla Reddy Engineering College,
Hyderabad, India
dDepartment of Electronics and Communication Engineering, GLA University, Mathura, India
eDepartment of Electronics and Communication Engineering, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, India

Received 6 January 2024
Accepted 4 March 2024

Abstract.
BACKGROUND: Dengue fever is rapidly becoming Malaysia’s most pressing health concern, as the reported cases have
nearly doubled over the past decade. Without efficacious antiviral medications, vector control remains the primary strategy for
battling dengue, while the recently introduced tetravalent immunization is being evaluated. The most significant and dangerous
risk increasing recently is vector-borne illnesses. These illnesses induce significant human sickness and are transmitted by
blood-feeding arthropods such as fleas, parasites, and mosquitos. A thorough grasp of various factors is necessary to improve
prediction accuracy and typically generate inaccurate and unstable predictions, as well as machine learning (ML) models,
weather-driven mechanisms, and numerical time series.
OBJECTIVE: In this research, we propose a novel method for forecasting vector-borne disease risk using Radial Basis Function
Networks (RBFNs) and the Darts Game Optimizer (DGO) algorithm.
METHODS: The proposed approach entails training the RBFNs with historical disease data and enhancing their parameters
with the DGO algorithm. To prepare the RBFNs, we used a massive dataset of vector-borne disease incidences, climate variables,
and geographical data. The DGO algorithm proficiently searches the RBFN parameter space, fine-tuning the model’s architecture
to increase forecast accuracy.
RESULTS: RBFN-DGO provides a potential method for predicting vector-borne disease risk. This study advances predictive
demonstrating in public health by shedding light on effectively controlling vector-borne diseases to protect human populations.
We conducted extensive testing to evaluate the performance of the proposed method to standard optimization methods and
alternative forecasting methods.
CONCLUSION: According to the findings, the RBFN-DGO model beats others in terms of accuracy and robustness in
predicting the likelihood of vector-borne illness occurrences.
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1. Introduction

In the world’s dissimilar tropical and subtropical regions, the lethal viral disease dengue fever severely
threatens public health. In 2017, there were 104 million dengue virus cases worldwide, up from 23
million in 1990, according to a recent study. Even though dengue is most often found in developing
and underdeveloped countries, the effects of globalization and ongoing climate change are visible in
the spread of the illness to previously unaffected areas. The severity of dengue infection presentations
ranges from mild fever with symptoms such as increased body temperature, eye pain, aching muscles
and joints, skin eruptions, and headaches to more hemorrhagic severe fever and shock syndrome [1]. In
the absence of particular antiviral medications or licensed vaccinations, public health officials need to
rely on supportive therapies and vector control approaches, such as insecticides, to stop the transmission
of dengue infection. The primary way of controlling dengue is vector control. Still, it has limitations
due to complicated transmission dynamics, the ineffectiveness of existing treatments, behavioral and
social variables, environmental impacts, resource shortages, and gaps in research and innovation. To
tackle these problems, cross-sector cooperation, consistent funding for R&D, and a multidisciplinary
strategy involving players from many fields are required. Public health professionals employ vector
control strategies to manage dengue infections, such as source reduction, larval and adult mosquito
control, biological control, community involvement, and integrated vector management. Dengue cases
and mosquito numbers are tracked via surveillance systems.

Although the disease is widespread over numerous parts of Southeast Asia, the western Pacific, and
Africa, there is still a danger of infection in these locations due to increased mosquito amounts near places
where people live. The rapidity at which the dengue virus spreads has been discovered to be determined by
temperature, rainfall, and relative humidity. These circumstances favor rapid population growth because
Aedes mosquitos mature and reproduce more quickly [2]. Artificial neural networks having input, hidden,
and output layers are called radial basis function networks (RBFNs). Gaussian functions quantify how
similar the input data and prototype vectors are. Using supervised learning algorithms, training entails
optimizing weights and parameters. RBFNs provide interpretability and adaptability in machine learning
applications.

Healthcare systems are under unprecedented strain due to the increasing incidence of dengue infections
resulting from climate change and unplanned urbanization. According to research, essential occurrences
detected and handled early can significantly lower mortality risk and health problems. Precise estimates
of sick people’s occurrence are also mandatory for resource planning and allocation. It is then possible to
increase readiness through educational and awareness movements once the expected number of cases
and their timing are known. This could entail shifting resources to high-risk locations and employing
medical reinstruction to improve symptom detection and treatment before the peak transmission period.
Early warning systems are dangerous for public health professionals in dengue-endemic areas to deploy
available resources optimally. Numerous studies have attempted to forecast the beginning and spread
of dengue, with varying degrees of success [3]. Numerous academics have endeavored to predict the
occurrence and epidemics of dengue, with varying degrees of success. This is critical since developing
pre-epidemic preparedness measures depends on accurate dengue predictions. These attempts aimed
to create a reliable early warning system alerting medical personnel of an impending outbreak. The
models employed to forecast dengue cases differed considerably. Statistical models, ensemble forecasting
systems, data-driven machine-learning methods, and mechanical models have all been used in preceding
studies. Due to the considerable amount of data required for model parameterization, automatic models
based on deterministic differential equations and a thorough understanding of dengue transmission
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typically fail to provide precise projections. Another study [4] used internet searches and social media
data to forecast dengue prevalence. For this aim, forecasters have successfully used statistical and ML
models more than mechanical models, primarily depending on dengue cases and environmental factors [5].

Any blood-sucking vector, like a mosquito, sandfly, or other insect, can spread infectious diseases
known as vector-borne diseases (VBD). These ailments include malaria, leishmaniasis, dengue fever,
chikungunya, zika, and chikungunya. The global illness burden is rising as a result of these infections.
The rise of the VBDs, which claim 700,000 deaths annually, has put the lives of more than 80% of people
in the globe in jeopardy. Pakistan is a subtropical country, and this is where VBDs are most prevalent.
Seasonal illnesses include VBDs. Numerous such deadly diseases are commonplace in Pakistan. Some of
these include leishmaniasis, dengue, and malaria [6].

This section will provide a novel and creative approach to VBD risk assessment that combines DL with
a hybrid methodology based on Radial Basis Function Networks (RBFN). This research developed an
established and effective forecasting model by combining the strengths of DL algorithms in dealing with
complex, high-dimensional data with the interpretability and adaptability of RBFN. DGO is an innovative
optimization that takes cues from the planned decisions made by darts players. This exclusive hybrid
practice intends to overcome the limits of standard forecasting methods by combining the benefits of deep
learning and the efficiency of DGO.

The primary contributions of this work:
– To develop a novel method for forecasting vector-borne illness risk employing the RBFN-DGO

algorithm.
– The suggested method is divided into two stages: RBFNs using historical disease data and optimizing

their parameters with the DGO algorithm.
– To train the RBFNs, we use an enormous dataset of vector-borne disease incidences, climate

variables, and geographical data.
– The DGO algorithm efficiently searches the RBFN parameter space and refinement of the model’s

architecture to improve forecast accuracy.
– This study increases public health predictive modeling by offering light on effectively controlling

vector-borne diseases to protect human populations.

2. Literature survey

Munirathinam et al. [7] describe a unique technique for anticipating vector-borne illnesses using
medical data. The method combines a hybrid Support Vector Machine-based Random Forest (SVM-
RF) and a Spotted Hyena-based Chimp Optimisation Algorithm (SSC). The proposed hybrid SVM-RF
classifier method accurately recognizes vector-borne diseases. The suggested SSC-optimized mixed
SVM-RF method performed better on the vector-borne Dataset than the competing algorithms, with 92%,
93.25%, 92.53%, and 91.52%, respectively. Ali et al. [8] proposed that the spatial layout of water bodies
substantially impacts the occurrence of vector-borne diseases. Data augmentation, feature engineering,
transfer learning, regularisation, ensemble learning, and sensitivity analysis are some tactics used by the
RBFN-DGO algorithm to address data scarcity in vector-borne illness forecasting. These steps address
the lack of data while enhancing the precision and dependability of risk assessments for vector-borne
diseases. They considered the amount of wetness on the surface, the temperature there, how far they were
from trash bins, and how frequently dengue and malaria cases had been reported. This recent discovery
highlights the critical role of geospatial methods in categorizing disease epidemic hotspots and offers
capable chances for use in numerous technical sectors.
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Carvalho et al. [9] proposed a compartment model for mosquito life cycles involving six stages (eggs,
larvae, pupae, and adults) and hypothesized that environmental variables such as temperature, humidity,
rainfall, and ease of access to breeding sites affected the rate of oviposition. Different control tactics were
evaluated. However, the effect of model parameters was not considered. According to earlier research,
Jayaraj et al. [10] claimed that the weather influences the severity and scope of dengue occurrence. In
Tawau, Sabah, a prediction model is still a cutting-edge approach to scientific forecasting. The technique
used in this study shows potential for forecasting likely dengue epidemics 1–4 months in advance. These
definitions are similar to earlier studies carried out in many countries, which consistently showed that
temperature and humidity act as essential indicators for the prevalence of dengue.

Chakraborty et al. [11] introduce a novel hybrid model integrating ARIMA and neural network
autoregressive (NNAR) model to account for both linearity and nonlinearity in the data sets. After the
ARIMA model removes linear tendencies from the data, the NNAR model is given the residual values.
The hybrid methodology we suggest shows better predicting accuracy than the current state-of-the-art
dengue time-series forecasting approaches when applied to three different dengue time-series datasets.
The consequences of this study designate that the proposed hybrid methodology can accurately predict
dengue cases over a sufficiently long-time horizon.

Jagadesh et al. [12] plotted the five distinct disease categories as risk patterns and regionalized the
leishmaniasis species according to the environmental circumstances in French Guiana. Climate variables
such as temperature, precipitation, and others impact the leishmaniasis species. Taking down trees
damages the environment significantly as well. The study looked into the effects of several leishmaniasis
epidemics on temperature, precipitation, humidity, and deforestation. Stacked forms distribution models
(SSDMs) can accurately identify the areas most vulnerable to contracting leishmaniasis. SSDMs could be
used in future studies to examine the regional distribution of leishmaniasis species.

In northeastern Thailand, Rahman et al. [13] presented data on household income, urban versus
rural domicile, socioeconomic position, knowledge, attitude, and practices about dengue. Additionally,
they discussed the geographic distribution and predictive analysis of the two levels of dengue vector
prevalence, high and low. This included a review of the use and coverage of the land, considering
urbanized areas, wetlands that are always there, a natural forest canopy, rubber plantations, and rice
farming. The authors examined various data types by utilizing machine learning approaches. Although
temperature, precipitation, and humidity were not employed in this experiment, it is crucial to emphasize
that they should be given greater attention because RF gave the most excellent model performance of any
data variable.

Using a particular focus on geographic factors, McMahon et al. [14] undertook a thorough investigation
into other factors preventing the transmission of malaria. They used remote sensing methods to get insights
into the environmental factors influencing the prevalence of malaria in Ethiopia’s two separate geographic
zones. Geographical variables like temperature, rainfall, plant cover, land use, and the availability of
surface water, as well as indicators like the NDMI (Normalised Difference Moisture Index), NDVI
(Normalised Difference Vegetation Index), and LST (Land Surface Temperature), affected the frequency
of malaria. These variances were linked to the various environmental conditions in different places. This
study used boosted regression tree (BRT) models to consider the relationship between malaria incidence
and environmental factors. The subdistricts with minor vegetation and the wettest air experienced the
most crucial malaria cases during the outbreak season.

Ferdousi et al. [15] reported dengue fever in Espirito Santo, Brazil. The study used time-series predic-
tion approaches, including dengue disease cases, temperature, precipitation (weekly rainy days count),
relative humidity, surface-level pressure, and precipitable water. The researchers developed a novel
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approach that enriched the temporal viewpoint by combining historical dengue case data from several
places. Their strategy combined correlation, spatial proximity, and local incidence measures to prioritize
neighboring area incidence data. The study used RNN, LSTM, and GRU models to estimate dengue
disease occurrence accurately. The regionally particular Environmental and economic variables will
eventually be incorporated into the model, including these aspects in the feature prioritization procedure.

Anggraeni et al. [16] forecasted the outbreak using fuzzy logistic regression using validation data. This
prediction model significantly outperforms rival models such as Naive Bayes, Neural Network (NN),
and Random Forest (RF). Temperature and the number of dengue cases were the two most essential
components in this projection. Good hygiene habits and a high level of social awareness influence
prediction outcomes. These factors should be considered while making predictions. The mosquito
population variable is justified since it affects outbreaks.

According to Appice et al. [17], Mexico was included in the upcoming year’s monthly projection of
dengue cases. The data had air temperature and instances of hemorrhagic dengue and dengue fever from
certain geographic and temporal regions. Different time-series prediction methods were applied. Time-
series based on auto-encoding the techniques utilized were clustering with the nearest neighbor, M5’,
Autoregressive Integrated Moving Average, Support Vector Regression (SVR), Vector Autoregression, and
kNN. The link between the dependent variable (dengue cases) and the independent variable (temperature)
was determined using regression analysis.

A spatiotemporal component fusion model (STCFM) is recommended by Li et al. [18] to forecast the
risk of dengue. Since mosquitoes spread dengue, we use feature variables to describe temporal trends
and spatial distributions separately, considering mosquito abundance and spatiotemporal lags. To better
forecast, we use multiscale modeling of temporal interdependence to find patterns of data fluctuation
across temporal segments. We evaluate multivariate spatial correlation analyses as novel characteristics
and comprehend the interdependence of locations using the ConvLSTM model. Numerous learning
strategies are combined to provide forecasts.

2.1. Limitations of existing system

For an illness organization to be successful, it is essential to rely on accurate and current data. Data
limitations might hamper the precision of approximation to improve interventions regarding quality,
completeness, and timeliness. It might be challenging to incorporate data from numerous sources, such as
data on the climate, disease observation, and vector populations. Data preparations and values that are
unsuited can produce unlimited or undersupplied analyses. Predictive models’ competence to accurately
predict disease outbursts and the dynamics of vector populations can have some limits. In complex
environmental systems, these models rely on prospects that may only sometimes be true.

2.2. Problem identification

The first problem is when data from different sources becomes standardized and combined. There needs
to be more consistency and reliability in the data sources used to analyze socioeconomic characteristics,
illness incidence, vector dispersion, and climate. An important task is developing a dataset that is both
dependable and cohesive. Seasonality and regional diversity are regular characteristics of vector-borne
illnesses. Creating real-time monitoring systems that can change the environment and send prompt
declarations to healthcare authorities is problematic. Any disease management method must include
community participation and education. A critical issue is ensuring that the hybrid method properly
involves and enables local populations to take preventative steps.
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3. Proposed system

The section presents a novel method for forecasting vector-borne illness risk employing the RBFN-DGO
algorithm. It is advantageous when there is a lack of data since it is designed to fine-tune neural network
parameters and improve model performance professionally. RBFNs are the primary determining model
in the obtainable approach. The RBFN class of neural networks is an excellent applicant for problems
involving the prediction of illness risk because they are excellent at capturing nonlinear connections in
the data. Since RBFNs have transparent structure, adaptive learning, local learning, nonlinear mapping,
feature transformation, and adaptive learning, they are good at predicting the likelihood of sickness.
They can handle massive datasets and are scalable and computationally efficient. Their architecture and
training procedure are described in depth to show how well they can be used for epidemiological data. The
research shows the efficiency of the RBFN-DGO combination using real-world epidemiological data from
diverse vector-borne diseases. In vector-borne disease epidemiology, comparing model predictions with
real-world conditions is essential for accuracy evaluation, assumption validation, calibration, decision
support, early warning systems, and trust-building. It promotes cooperation in attempts to prevent and
manage disease by bringing model assumptions into line with observed disease transmission patterns.
The findings demonstrate that the suggested method outperforms established forecasting techniques,
producing risk estimates that are more precise and trustworthy. Figure 1 shows the block diagram of
RBFN-DGO. Assessing an RBFN’s performance and generalization capacity is imperative by testing it
on both in-sample and out-of-sample datasets. While out-of-sample testing gauges the model’s ability to
generalize to new data, in-sample testing measures the model’s fit to the training dataset. By ensuring
consistency in performance, comparing the findings improves the accuracy and dependability of the
model.

3.1. Dataset description

This study counts lab-confirmed dengue cases weekly in San Juan, Iquitos, and Ahmedabad, three
tropical and subtropical regions. We look at statistics on how much rain falls each week to determine how
climate affects dengue epidemics. The NOAA Repository2, established due to collaboration between
the US government, Peruvian government agencies, and US institutions, contains information on the
prevalence of dengue in San Juan and Iquitos. The US Climatology Office and NOAA are monitoring the
precipitation in these regions. The data on rainfall totals in the Ahmedabad region and dengue prevalence
(per 10,000 persons) are taken from [19]. We examine the weekly data for San Juan from the start of
1991 to the end of 2012. In this study, the periods from 2002 to 2012 and 2005 to 2012 for Iquitos and
Ahmedabad, respectively, were looked at. In the next part, we talk in-depth about the global features of
these datasets.

3.2. Data preprocessing

Using the information on dengue cases, mosquito vectors, and geographic information shown in Fig. 2,
the appropriate staff gathered data and submitted it to the monitoring center. The instances were divided
by source region using the conventional matching process. Before feature extraction, data cleaning is
required because the raw data is crowded. Data cleansing includes grouping based on grid nodes and time
slice segmentation based on timestamps. Four streets and more than 400 dwellings were selected to assess
the mosquito population. After checking all outdoor water containers, the larval indices were calculated
as shown in Eq. (1). Additionally, the variables sum_con and inv_house display the entire number of
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Fig. 1. Proposed diagram for RBFN-DGO.

studied containers and houses, respectively, while pos_con and pos_house display the percentage of
containers and homes that contain mosquito larvae. It is crucial to remember that there is a strong link
between dengue cases and space’s three larval markers (BI, CI, and HI).

B =
Pcon

Inhou
∗ 100, C =

Pcon

Scon
∗ 100, H =

Phou

Inhou
∗ 100 (1)

We go on to data filtering and normalization after data segmentation to eliminate outliers. When data
filtering and normalization are performed on time series data, advanced techniques, including interpola-
tion, imputation, time-based imputation, multiple imputations, model-based imputation, normalization,
dynamic temporal warping (DTW), and robust statistical measures are employed to handle missing values.
Due to the frequency of sampling used for mosquito vector monitoring, time series data must be filled in
with missing values. One method for dealing with missing values is to compute the weighted average
of nearby data points using the surrounding mean imputation method. Missing values in time series
data are addressed using weighted average and forward-filling techniques, which preserve the temporal
structure and use nearby observations. By combining neighboring data and considering trends, weighted
average computes a weighted average of the closest data points. Forward forward-filling maintains
temporal continuity and accommodates brief data outages by propagating the most recent observed value
forward. Forward-filling is another strategy that takes advantage of the material connection in time series
data and presupposes that missing values correspond to the variable measurements from the previous
time step. One computationally effective technique for filling in missing values in time series data is
forward-filling, which also preserves temporal patterns. Evaluation is essential because, while it is simple
to use and appropriate for linear changes, it may not be suitable for clusters or nonlinear data distributions.
Component-by-component feature extraction is finished following the data preprocessing shown in Fig. 2.
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Fig. 2. Steps Involved In Data Preprocessing.

3.3. Radial basis function neural network

The proper set of potential diseases can be found by effectively organizing symptoms using the radial
basis network. Radial basis networks are susceptible and clearly distinguish output based on input.
During training, a network’s number of neurons, spread, gain, and error value is fixed for a particular
information set. The network may be used to determine the correct disease from the provided symptoms
once it has been trained. An RBFN’s ability to identify the right disease based on symptoms after
training depends on several factors, including the caliber of the training data, the model’s complexity, the
feature representation, the training algorithm, the ability to generalize, and the selection of evaluation
metrics. The user selects the sensitivity value when choosing how many alternatives are realistic. The
network can be introduced again whenever necessary using fresh inputs and parameters. The model may
adjust its parameters and better understand the link between input characteristics and target outputs by
retraining the radial basis function network (RBFN) with new inputs and settings. Nonlinear modeling
and pattern recognition applications of RBFNs include function approximation, time series prediction,
control systems, financial forecasting, optimization, and anomaly detection. They are accommodating in
engineering, finance, medicine, and telecommunications.

An RBFN, a particular kind of neural network, is utilized for issues including pattern recognition,
function approximation, and time series prediction. Community engagement and education are essential
to maximize the efficacy and sustainability of disease control programs. Their contributions to the
intervention enhance its scalability and durability by ensuring cultural sensitivity, promoting behavioral
change, offering social support networks, and providing local expertise and resources. This method
guarantees disease management that is both sustainable and suitable for the culture. Although they are less
effective when used directly as universal approximators of acceptable precision, RBF networks provide a
PPDM solution. A traditional RBF network has layers for input, hidden, and output.

An RBF network’s hidden layer can be measured as a function that transforms input patterns from a
space that is not linearly distinguishable to one that is. In an RBFN, the hidden layer nonlinearly maps input
patterns into a higher-dimensional feature space using radial basis functions, performing a transformational
function. With the help of this transformation, the network’s predictive power is eventually increased by
enabling feature extraction, nonlinear mapping, dimensionality reduction, localized representation, and
selective input pattern change. The responses of hidden layer neurons produce new feature vectors that
indicate patterns in this altered space. Each output vector represents a collection of input patterns. The
architecture of a radial basis network is based on this structure.



AUTHOR C
OPY

A.K. Nanda et al. / Forecasting deep learning-based risk assessment of vector-borne diseases 3349

Through the association of input patterns with matching output responses, the capture of nonlinear
relationships, the compact representation of input characteristics, and the ability to generalize to unseen
data, the appropriate link between the output vector and the input dataset in an RBFN promotes pattern
recognition. This relationship is the basis for the RBFN’s capacity to carry out efficient pattern recognition
tasks across various domains. The output vector Y is depicted below with the same size as the input data
set X, where X is of size Nxm:

Y =


y1,1 y1,2 . . . y1,m
y2,1 y2,2 . . . y2,m
· · · ·
· · · ·
· · · ·

YN,1 YN,2 . . . YN,m

 (2)

X = (x1, x2, . . . , xm ) (3)

Now, for each row of

yi = yi,1 yi,2 . . . yi,m

targets a row of

xi = xi,1 xi,2 . . . xi,m

We aim to determine which related but unknowable variables Xj has the target function f (yi) with
the lowest prediction error. Finding the weight vector W to locate Y with the least error is equivalent to
doing this.

W =W1 W2 . . .W3 (4)

X = f (y) (5)

The Radial Basis Network is used to select the function as a radial basis function.

f (y) =

p∑
k=1

wkφk (y) (6)

The radial function can be written as follows:

φk (y) = φ (‖y − yk‖) (7)

Where yk denotes the neural activation center. Radial basis function’s three primary parameters are
– Centre yk
– Distance Measure a = ‖y − yk‖
– The radial basis function’s shape
Figure 3 demonstrates how to feed an RBF network with anonymization input and an example function

approximator output. It illustrates how the network’s output deviates from its input values and instead
adopts its course.

The network is created after selecting a training set of data for it.

T =
{{

yk, xk
}}p

k−1
(8)

The objective has been established as

x(k) ≈ f
(
y(k)

)
(9)
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Fig. 3. RBFN framework.

3.4. Darts game optimizer (DGO)

Everybody, regardless of age or gender, appreciates the sport of darts. Although this game appears
straightforward, the players’ skill significantly impacts the point total. In darts, accuracy and precision
are rewarded by a scoring system that doubles for darts outside the triple ring and triples for those
inside. Higher expertise and accuracy are needed for the triple ring, whereas the double ring is said to
be less exact. The system encourages Players to aim for accuracy, which rewards more for successful
throws in the smaller triple ring and less for those in the wider double ring. Darts and a dartboard are
included in the game’s equipment [20]. The Darts Game Optimizer employs a sophisticated optimization
technique comprising target selection, throw strategy, risk assessment, and feedback loop. By considering
player performance, scoring zone layout, and target values, it focuses on optimizing scoring potential
and game objectives. The dartboard is divided into 82 sections, each with a different point value. The
inner bull receives 50 points for each toss, while the outer bull is awarded 25 points. The results are
displayed above for each sector. The score is tripled if the darts land inside the little ring, doubling if
they do not. The center of the dartboard is highly significant because it ranks as the fifth-highest-scoring
region in the game. This section creates and shows a unique optimizer using the darts game’s potential.
Players in this game are DGO searcher agents, and the objective of the game is to get the highest score.
DGO searcher agents may be used for a variety of optimization tasks because of their properties, which
include population-based optimization, crossover operators, local and global search, group formation,
and differential evolution.

3.4.1. Mathematical modeling
A matrix represents the population of players, with each row denoting a single individual and each

column indicating that player’s many traits. The matrix’s column count reflects the number of problem
variables and their recommended values.

In this case, Z stands for the players’ matrix, zbi for the ith player’s bth dimension, m for the number of
variables, and N for the overall number of players.

Equation (10), which shows the data as a result of including zi in the fitness function, describes the
results.

Fbest = min (fit)N×1 (10)
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Table 1
Information on different sectors in the dartboard

Sector Area (mm2) Angel interval (degree)
Treble ring 278.9734 0 6 O 6 18
Outer bull 2.6702 × 10 + 3 0 6 O 6 360
Double ring 556.6902 0 6 O 6 18
Outer single score 5.3535 × 10 + 3 0 6 O 6 18
Inner bull 506.7075 0 6 O 6 360
Inner single score 910.1131 0 6 O 6 18

Zbest = Z (locationofmin (fit) , 1 : m) (11)

Fworst = max (fit)N×1 (12)

Zworst = Z (locationofmax (fit) , 1 : m) (13)

Fn =
fit− Fworst∑N

j=1

(
fitj − Fworst

) (14)

Pi =
Fn
i

max (Fn)
(15)

The ideal variable values are represented by Zbest, while the perfect fitness function value is represented
by Fbest. The least favorable fitness function value is denoted by Fworst, and the corresponding unfavorable
variable values are indicated by Zworst. Pi represents the probability function for the ith player, while Fn

it stands for the normalized fitness function value.
All dartboards have the exact measurements, which are as follows:

– The inner diameters of the double and treble rings are measured at 8 mm
– A bull’s inner dimensions: 12.7 mm
– The circumference of the outer bull’s exterior diameter: 31.8 mm
– The space between the treble wire and the middle bullseye. 107 mm
– From the innermost to the outermost bullseye wire: 170 mm
– From one side of the dual wire to the opposite side of the dual wire: 340 mm
– A dartboard’s entire size: 451 mm

As previously noted, the dartboard has 82 separate spots, and each has been given a unique score. Every
player gets three chances to fire darts during each round. Players’ skills and random opportunities work
together to choose where these darts land on the dartboard.

The six separate sectors of the dartboard are shown in Table 1, each with a different area.
As a result, each participant’s throwing score is generated and simulated using Eq. (16) through

Eq. (19).

Hi = round (82× (1− Pi)) (16)

KHi =

{
K (1 : H) , rand < Pi

K (H + 1 : 82) , else (17)

ki = KHi (l)&1 6 l 6 82 (18)

kni =

∑3

throws=1kthrows
i

180
(19)
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The KHi denotes the ratings of potential players for the player with index “i.” K denotes a scoring
matrix with scores listed in decreasing order. While kni it stands for the player’s score after it has been
normalized, it ki represents the player’s score for each throw.

Finally, using Eq. (19), the values of the issue variables and each player’s new status are modified.

Zi = Zi + rand (1,m)× (Zbest − 3kni Zi) (20)

3.4.2. Steps of DGO
After the simulation, various optimization issues can be solved using the suggested DGO algorithm.

The steps in the optimization process include initiation, assessment, selection, mutation, replacement,
recombination, and termination. Iterations are employed to choose parents, develop solutions, spread out
the population, and balance exploitation and exploration. Termination criteria identify the optimal course
of action and guarantee ongoing development.

Identifying several crucial elements is necessary to define the Digital Growth Objective (DGO). The
population of the algorithm consists of 50 players, and the method is stopped after 1000 iterations. A
random group of players is created at the start of the process.

A suggested solution to the problem is represented by each participant in the proposed method, which
is an m-member vector. The components of this vector represent the variables that make up the issue and
are used in the objective function to determine how serious it is. A weighted sum is the objective function
used to evaluate the severity of the problem. The weight of each vector component represents its relative
relevance, enabling a thorough assessment of the issue’s severity.

The various phases for implementing the DGO are as follows:

4. Result and discussion

4.1. Experimental setup

The radial basis network is implemented using Matlab, and the outcomes are validated. The following
procedures should be followed to create a Radial Basis Function Network (RBFN) in MATLAB: data
preparation, network design, training, validation, fine-tuning, experimentation with learning algorithms,
regularisation approaches, and training parameter optimization. Performance and accuracy are improved
by this procedure, which guarantees stable training, generalization, and correct forecasts. The spread,
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objectives, and number of neurons in the network are adjusted, and the best result is chosen based on
performance indicators. Matlab, which also offers graphical output representation, makes it simple to
change the tuning settings for the RBFN network. RBFNs are sophisticated models used to manage
nonlinear relationships in epidemiological datasets efficiently. They use interpretability, scalability,
clustering techniques, local receptive fields, nonlinear mapping, and adaptive learning to manage high-
dimensional datasets. Large datasets and public health decision-making can benefit from these qualities,
which offer insightful information on disease patterns, risk factors, and intervention tactics. The first
training (in-sample) and testing (out-of-sample) parts are built using the dengue and rainfall datasets.
Assessing an RBFN’s performance and generalization capacity is imperative by testing it on both in-
sample and out-of-sample datasets. While out-of-sample testing gauges the model’s ability to generalize
to new data, in-sample testing measures the model’s fit to the training dataset. By ensuring consistency
in performance, comparing the findings improves the accuracy and dependability of the model. The
extendable predictive potential of the notion is examined in this study using two separate test sets, each
lasting 26 and 52 weeks.

4.2. Performance validation

We evaluate the effectiveness of our proposed RBFN-DGO to several deep learning frameworks, such
as NBeatsX [21], TCNX [22], TransformersX [23], and BlockRNNX [24], all of which use exogenous
variables. Exogenous variables improve interpretability, generalization, resilience to data changes, and
domain-specific adaptability in deep learning frameworks. They also reduce overfitting and facilitate
well-informed decision-making across various applications and domains. RBFN-DGO is a deep learning
framework that outperforms other frameworks such as NBeatsX, TCNX, TransformersX, and Block-
RNNX in forecasting vector-borne illness risk because of its hybrid technique that efficiently captures
complicated dynamics in epidemiological datasets. Based on several factors, including prediction accu-
racy, interpretability, computational efficiency, robustness, generalization, scalability, and domain-specific
considerations, the best model among NBeatsX, TCNX, TransformersX, BlockRNNX, and RBFN-DGO
is chosen. Setting these criteria in order of importance and carrying out comparison studies assist stake-
holders in making an educated choice based on their unique application requirements. Our analysis uses
metrics like Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Symmetric Mean Absolute
Percent Error (SMAPE), and Mean Absolute Scaled Error (MASE). These metrics’ formulas are as
follows:

RMSE =

√√√√1

h

h∑
i=1

(yi − ŷi)2 (21)

MAE =
1

h

h∑
i=1

|yi − ŷi| (22)

Accuracy =
TP + TN

TP + FP + TN + FN
(23)

Tn, Fp, Tp, and Fn, respectively, are values that stand in for true positives, false positives, true negatives,
and false negatives.

SMAPE =
1

h

h∑
i=1

|ŷi− yi|
(|ŷi|+ |yi|)/2

× 100 (24)
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Table 2
MAE Analysis for RBFN-DGO method

Number of data from dataset NBeatsX TCNX TransformersX BlockRNNX RBFN-DGO
100 36.55 32.18 29.76 26.87 21.98
200 37.19 32.98 29.12 27.19 22.76
300 37.98 33.18 30.45 27.99 23.18
400 38.19 34.67 30.12 27.87 24.44
500 39.98 35.19 31.76 28.21 25.98

Fig. 4. MAE Analysis for RBFN-DGO method.

MASE =
1

h

∑N+h
i=N=1 |ŷi− yi|
1

N− |yi − yi− |
(25)

Where the forecasted value is yi, and the actual value is yi, N indicates how seasonal the series is,
whereas h is the size of the forecasting period. The forecasting period (h) size significantly impacts model
assessment, model complexity, and prediction accuracy. More extended periods call for larger models,
whereas shorter intervals call for more precise forecasts. The extent of the period is also influenced by the
assessment criteria selected, which may introduce prediction horizon effects. By convention, the “best”
model is the one that has the lowest numbers for these metrics [25].

4.2.1. MAE analysis
Figure 4 and Table 2 display an MAE study of the RBFN-DGO methodology compared to other

existing procedures. The graph demonstrates how the DLarning method improved performance with
reduced MAE. In difference, the MAE values for the NBeatsX, TCNX, TransformersX, and BlockRNNX
models are 36.55%, 32.18%, 29.76%, and 26.87%, respectively, whereas the RBFN-DGO model has
MAE of 21.98% with 100 data. The RBFN-DGO model, however, has performed well with low MAE
values for various data. The NBeatsX, TCNX, TransformersX, and BlockRNNX models’ respective MAE
values are 39.98%, 35.19%, 31.76%, and 28.21%, while the RBFN-DGO model’s MAE value is 25.98%
with 500 data.

4.2.2. SMAPE analysis
Figure 5 and Table 3 provide a SMAPE comparison of the RBFN-DGO methodology with other

methodologies. The graph demonstrates how the DLng technique has improved performance with a
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Table 3
SMAPE Analysis for RBFN-DGO method

Number of data from dataset NBeats TCNX TransformersX BlockRNNX RBFN-DGO
100 45.19 42.22 38.19 35.19 31.98
200 45.87 42.67 39.98 36.19 31.56
300 46.18 43.18 40.12 36.98 32.28
400 46.88 44.56 40.67 37.12 33.45
500 47.12 44.98 41.18 37.98 34.19

Table 4
RMSE Analysis for RBFN-DGO method

Number of data from dataset NBeatsX TCNX TransformersX BlockRNNX RBFN-DGO
100 34.19 38.19 30.65 41.98 27.12
200 34.98 38.67 31.23 42.22 27.98
300 36.19 39.12 31.98 43.76 28.13
400 36.12 39.99 32.87 44.55 28.98
500 37.77 40.12 33.17 45.11 29.12

Fig. 5. SMAPE Analysis for RBFN-DGO method.

decrease in SMAPE. In difference, the SMAPE values for the NBeatsX, TCNX, TransformersX, and
BlockRNNX models are 45.19%, 42.22%, 38.19%, and 35.19%, respectively, whereas the RBFN-DGO
model has a SMAP of 31.98% with 100 data. The RBFN-DGO model, however, performs well with
low SMAPE values for various data. The NBeatsX, TCNX, TransformersX, and BlockRNNX models’
respective SMAPE values are 47.12%, 44.98%, 41.18%, and 37.98%, whereas the RBFN-DGO model’s
SMAPE value for 500 data is 34.19%.

4.2.3. RMSE analysis
In Fig. 6 and Table 4, an RMSE assessment of the RBFN-DGO methodology is shown in contrast to

other methods. The graph demonstrates how technology has improved performance with low RMSE.
Low RMSE and MASE values signify superior performance over a naïve prediction, predictive solid
accuracy, and near alignment between observed and anticipated values. Achieving minimum values
increases forecasting effectiveness and decision support confidence. In difference, the RMSE values
for the NBeatsX, TCNX, TransformersX, and BlockRNNX models are 34.19%, 38.19%, 30.65%, and
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Table 5
Accuracy analysis for RBFN-DGO method

Number of data from dataset NBeatsX TCNX TransformersX BlockRNNX RBFN-DGO
100 71.87 86.18 78.98 93.15 97.12
200 72.98 87.23 79.13 94.44 98.23
300 73.76 89.17 81.23 95.12 99.13
400 75.55 91.34 82.87 95.98 99.87
500 77.12 92.17 84.55 96.13 99.98

Fig. 6. RMSE analysis for RBFN-DGO method.

41.98%, respectively, whereas the RBFN-DGO model has an RMSE of 27.12% with 100 data. The RBFN-
DGO model has, however, performed best for various nodes with low RMSE values. The RMSE value
for the RBFN-DGO model with 500 data is 29.12% as opposed to the NBeatsX, TCNX, TransformersX,
and BlockRNNX models’ respective RMSE values of 37.77%, 40.12%, 33.17%, and 45.11%.

4.2.4. Accuracy analysis
Figure 7 and Table 5 associate the RBFN-DGO methodology’s accuracy with other methods. The

graph demonstrates the increased accuracy and efficiency of the deep learning approach. For instance, the
NBeatsX, TCNX, TransformersX, and BlockRNNX models’ respective accuracy values for 100 data are
71.87%, 86.18%, 78.98%, and 93.15%, respectively, as opposed to the RBFN-DGO model’s accuracy
of 97.12%. However, the RBFN-DGO model has been shown to perform best with a large amount of
data. Like this, with 500 data, the RBFN-DGO has an accuracy of 99.98%, while the corresponding
accuracy values for NBeatsX, TCNX, TransformersX, and BlockRNNX are 77.12%, 92.17%, 84.55%,
and 96.13%.

4.2.5. Execution time analysis
In Table 6 and Fig. 8, the execution time of the proposed RBFN-DGO methodology is compared to

that of existing methods, where the RBFN-DGO technique has outperformed all the other methods. The
suggested RBFN-DGO approach, for example, took only 1.456 ms to execute 100 data. In contrast, other



AUTHOR C
OPY

A.K. Nanda et al. / Forecasting deep learning-based risk assessment of vector-borne diseases 3357

Table 6
Execution time analysis for RBFN-DGO method

Number of data from dataset NBeatsX TCNX TransformersX BlockRNNX RBFN-DGO
100 14.987 10.567 8.134 5.198 1.456
200 14.543 11.321 8.567 5.987 2.187
300 14.119 11.876 8.456 6.123 2.834
400 15.678 12.876 9.113 6.987 3.987
500 15.998 13.234 9.987 7.145 4.456

Table 7
MASE analysis for RBFN-DGO method

Number of data from dataset NBeatsX TCNX TransformersX BlockRNNX RBFN-DGO
100 40.13 43.33 37.19 46.19 34.18
200 41.13 43.87 37.98 46.67 35.19
300 41.76 44.55 38.11 47.17 35.98
400 42.87 44.12 38.65 47.99 36.19
500 42.99 45.66 39.12 48.88 36.98

Fig. 7. Accuracy analysis for RBFN-DGO method.

current methods, such as NBeatsX, TCNX, TransformersX, and BlockRNNX, have taken 14.987 ms,
10.567 ms, 8.134 ms, and 5.198 ms, respectively, as their execution time. Similarly, the suggested RBFN-
DGO approach takes 4.456 ms to execute 500 data, while existing techniques like NBeatsX, TCNX,
TransformersX, and BlockRNNX have taken 15.998 ms, 13.234 ms, 9.987 ms, and 7.145 ms, respectively.

4.2.6. MASE analysis
Figure 9 and Table 7 demonstrate an MASE comparison of the RBFN-DGO methodology to other

methodologies. The performance, stability, seasonality, generalization, and complexity of forecasting
models are shown by the MASE comparison. Variations offer complexity trade-offs and flexibility,
whereas lower MASE values suggest more accuracy. The graph demonstrates how the DL technology
improved performance while decreasing MASE. In difference, the MASE values for the NBeatsX, TCNX,
TransformersX, and BlockRNNX models are 40.13%, 43.33%, 37.19%, and 46.19%, respectively,
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Fig. 8. Execution time analysis for RBFN-DGO method.

Fig. 9. MASE analysis for RBFN-DGO method.

whereas the RBFN-DGO model has an MASE of 34.18% with 100 data. The RBFN-DGO model,
however, performs best with low MASE values for various data. The NBeatsX, TCNX, TransformersX,
and BlockRNNX models’ respective MASE values are 42.99%, 45.66%, 39.12%, and 48.88%, while the
RBFN-DGO model’s MASE value is 36.98% for 500 data.

4.2.7. Training and testing validation
Training accuracy is a metric used to assess how well the model performed on the training data. The

model iteratively modifies its parameters to fit the data better to increase the training accuracy. The model
successfully picks up on the patterns and trends in the training data when the training accuracy is high, as
shown in Fig. 10.

Testing and training loss analysis of the RBFN-DGO approach is essential for verifying vector-borne
illness risk predictions, assessing model performance, and fine-tuning parameters. While testing loss
evaluation shows the generalization and dependability of the model, monitoring training loss aids in
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Fig. 10. Training and testing accuracy analysis.

Fig. 11. Training and testing loss analysis.

the detection of overfitting. Model selection is aided by comparing testing loss among models, and
consistently low loss numbers confirm the applicability of the methods in real-world scenarios.

This dataset contains actual observations of the occurrences of vector-borne diseases and pertinent
environmental variables. The testing accuracy is determined by comparing the model’s predictions with
the exact circumstances of vector-borne diseases. The deep learning model used in the hybrid methodology
produces predictions on this unobserved data, as given in Fig. 11.

5. Conclusion

In conclusion, the RBFN-DGO to forecasting deep learning-based risk assessment for vector-borne
diseases is a significant development in epidemiology and public health. In this work, we developed a
hybrid model that performs better in forecasting dengue epidemics. With this novel method, consistent risk
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valuation techniques are combined with the strength of deep learning algorithms to provide a prediction
model that is more accurate and dependable. Complete acceptance of the factors impacting the occurrence
and transmission of vector-borne diseases and the RBFN-DGO integrates numerous data sources, such as
climatic data, geographic information, historical illness trends, and vector population dynamics, to provide
a detailed. Health authorities and legislatures can conduct battered preventive initiatives to minimize
the impact of these diseases on vulnerable groups, more professionally allocate resources, and make
conversant decisions due to this level of integration and complexity. The DGO algorithm efficiently
searches the RBFN constraint space in our proposed hybrid RBFN-DGO model, which improves the
model’s structure to increase forecast accuracy. RBFN-DGO offers a probable method for predicting the
risk of diseases spread by vectors. This study advances public health predictive modeling by shedding
light on the effective control of vector-borne diseases for the security of human populations. Compared
to the other existing systems’ high performances for our proposed method, it also makes predictions
with an accuracy of 99.98% and minimal RMSE and MASE values of 29.12% and 36.98%, respectively.
Forecasting deep learning-based risk assessment of diseases transmitted by vectors using a hybrid method
is a fascinating new field in disease surveillance, prevention, and management. The research identifies
many obstacles to assessing deep learning models on hypothetical data, including sample size, uncertainty
estimates, overfitting, generalization problems, and data drift. Utilizing the power of artificial intelligence,
we can better understand the dynamics of disease, which will help us work toward a healthier and more
secure future for those vulnerable to vector-borne diseases.
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